

Least squares

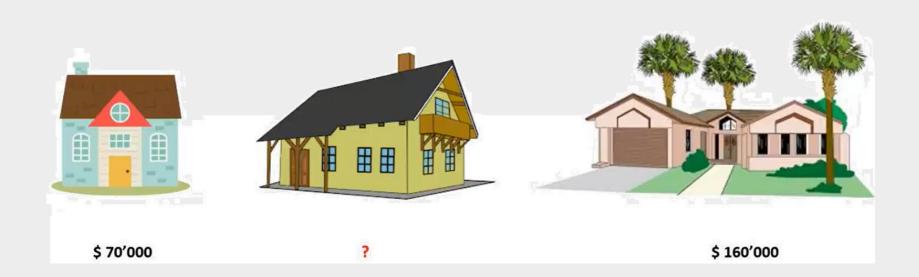
Linear Algebra

Department of Computer Engineering

Sharif University of Technology

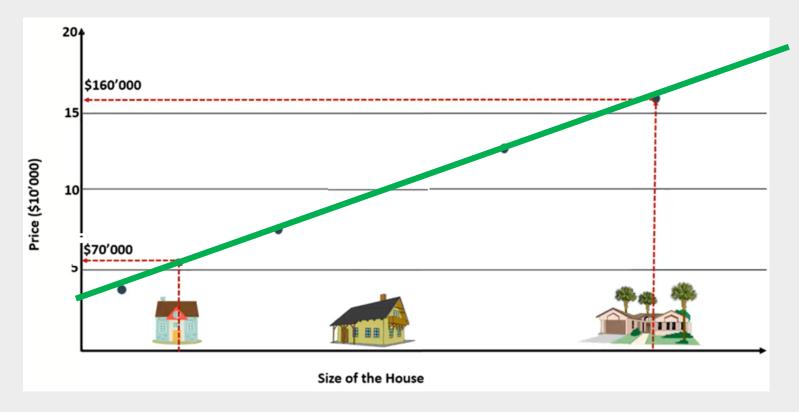
Hamid R. Rabiee <u>rabiee@sharif.edu</u>

Maryam Ramezani maryam.ramezani@sharif.edu



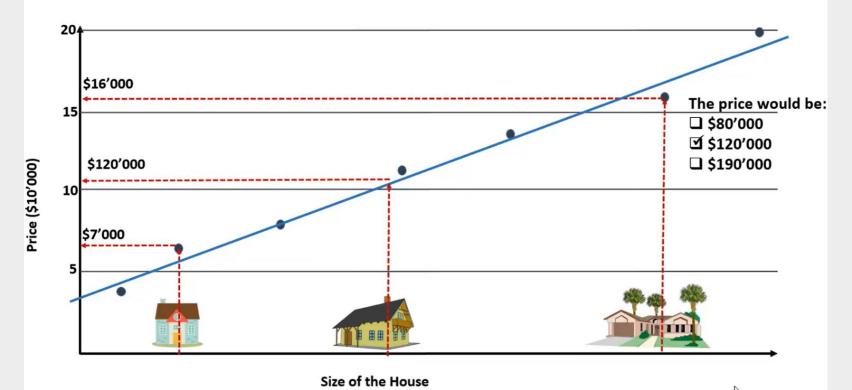
Linear Equation

Ax = b has solution.



Least Squares Error Correction

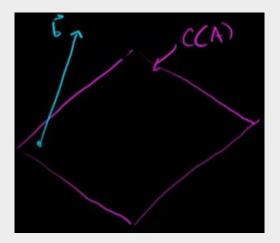
Ax = b has no solution.

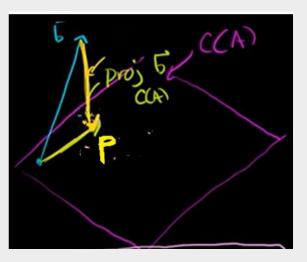


Hamid R. Rabiee & Maryam Ramezani

What is the problem?

- $A ext{ is } m \times n ext{ matrix}$
- Ax = b has no solution $\rightarrow b$ is not in the C(A) why?





- **D** Bad News: Ax = b has no solution
- **Good News:** $A\hat{x} = p$ has solution
 - o Unique
 - o Many

Review

□ 4 Subspaces:

- **Column Space** C(A)
- **D** Null Space N(A)
- **Given Space** $C(A^T)$
- □ Null Space of A^T = Left Null Space of $A = N(A^T)$

Theorem

- Orthogonality of the Row Space and the Null Space
- Orthogonality of the Column Space and the Left Null Space

Review

Projection a vector on a vector

- Column space of matrix?
- Rank of matrix?
- Is the matrix symmetric?
- Power two of this matrix?
- □ Projection a vector on a plane

Fill this page with my notes on the board 😁

$P = A(A^T A)^{-1} A^T$

□ Think about *Ps* when:

- \circ s is in the column space of A
- \circ s is in the orthogonal complement space of A
- o Geometry?
- o Math?

Fill this page with my notes on the board 😁

- Fill this page with my notes on the board C
 - \circ Least square in \mathbb{R}^2 and regression!!!
 - o Error
 - o Outlier

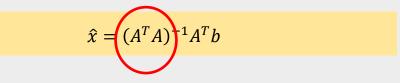
Look another way!!

- $(A^T A)^{-1} A^T$ is the left inverse of A
- $A(A^T A)^{-1} A^T$ is the projection matrix on C(A)

$$\hat{x} = (A^T A)^{-1} A^T b$$

What will happen when A is an invertible matrix?

Another problem?



Theorem

 \Box If A has linearly independent columns, then $A^T A$ is invertible.

$$\hat{x} = (A^T A)^{-1} A^T b$$
$$= A^{\dagger} b$$

pseudo-inverse of a left-invertible matrix

Therefore, when $A^T A$ is invertible, \hat{x} is the unique solution. This often happens when for D number of variables and N number of equations, we have $D \ll N$.

What will happen when $A^T A$ is not an invertible matrix? (when N < D)

 $X^T X$ will not be invertible when N < D. To illustrate why we have infinite number of solutions, consider in a two-dimensional problem (D = 2) we have only one training sample $x_1 = [1, -1], y_1 = 1$. We can see w = [a+1, a] for any $a \in \mathbb{R}$ will get 0 training error:

$$w^T x_1 = a + 1 - a = 1 = y_1.$$

This is true for any problem with N < D—in this case, you can always find a vector in the null space of X (a vector such that $X\boldsymbol{v} = 0$), and then for a solution \boldsymbol{w}^* , any vector with $\boldsymbol{w}^* + a\boldsymbol{v}$ with $a \in \mathbb{R}$ will get the same square error with \boldsymbol{w}^* . This case (N < D) is also called the **under-determined** problem, since you have too many degree of freedom in your problem and don't have enough constraints (data).

Good News!!! (When $A^T A$ is not an invertible matrix)

will have infinite number of solutions in this case

(4)

In fact, given any real $m \times n$ -matrix A, there is always a unique x^+ of minimum norm that minimizes $||Ax - b||^2$, even when the columns of A are linearly dependent.

the following approach to find the **minimum-norm solution** w^+ : Let $\mathcal{W} = \operatorname{argmin}_{w} \|Xw - y\|^2$ denote the set of solutions, we aim to find the minimum norm solution that

$$oldsymbol{w}^+ = \operatorname*{argmin}_{oldsymbol{w}\in\mathcal{W}} \|oldsymbol{w}\|_2.$$

SVD Next slide

Least squares problem

Theorem

□ given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find vector $x \in \mathbb{R}^n$ that minimizes

$$||Ax - b||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n A_{ij}x_j - b_i\right)^2$$

"least squares" because we minimize a sum of squares of affine functions.

$$||Ax - b||^2 = \sum_{i=1}^m r_i(x)^2, \qquad r_i(x) = \sum_{j=1}^n A_{ij}x_j - b_i$$

the problem is also called the linear least squares problem

Least squares and linear equations

Important

minimize
$$||Ax - b||^2$$

solution of the least squares problem: any \hat{x} that satisfies

$$||A \hat{x} - b|| \le ||Ax - b|| \quad \text{for all } x$$

Note

 $\hat{r} = A\hat{x} - b$ is the residual vector

if $\hat{r} = 0$, then \hat{x} solves the linear equation Ax = b

if $\hat{r} \neq 0$, then \hat{x} is a least squares approximate solution of the equation

in most least squares applications, m > n and Ax = b has no solution

Example

□ Normal equations of the least squares problem $A^T A x = A^T b$

 \Box Coefficient matrix $A^T A$ is the

□ Equivalent to $\nabla f(x) = 0$ where f(x) =

□ All solutions of the least squares problem satisfy the normal equations

$$\hat{x} = (A^T A)^{-1} A^T b$$

Look at board I am writing in vector and matrix form with derivation

Solving least squares problems (Method 2): QR factorization

Example

 \Box Rewrite least squares solution using *QR* factorization *A* = *QR*

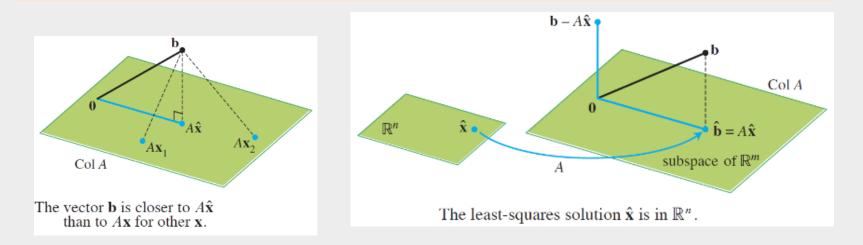
 \Box Complexity: $2mn^2$

Algorithm: Least squares via QR factorization Input: $A : m \times n$ left-invertible Input: $b : m \times 1$ output: $x_{LS} : n \times 1$ Find QR factorization A = QRCompute $Q^T b$ Solve $Rx_{LS} = Q^T b$ using back substitution

□ Identical to algorithm for solving Ax = b for square invertible A, but when A is tall, gives least squares approximate solution

Note

The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.



Theorem

A has linearly independent columns, then below vector is the unique solution of the least squares problem

minimize
$$||Ax - b||^2$$

 $\hat{x} = (A^T A)^{-1} A^T b$
 $= A^{\dagger} b$

pseudo-inverse of a left-invertible matrix

□ Proof?

Solving least squares problems

Example

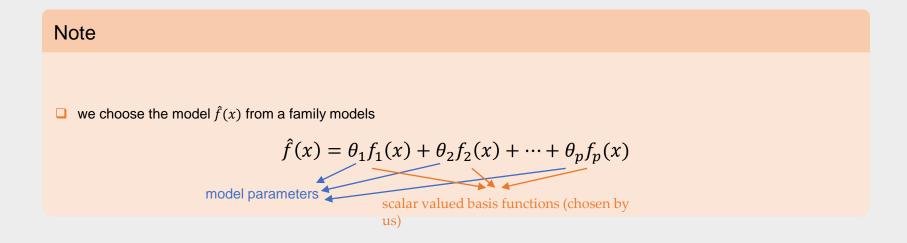
a 3×2 matrix with "almost linearly dependent" columns

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-5} \\ 0 & 0 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 10^{-5} \\ 1 \end{bmatrix},$$

round intermediate results to 8 significant decimal digits

Solve using both methods

□ Which one is more stable? Why?



Example

weighted least squares is equivalent to a standard least squares problem

minimize
$$\begin{bmatrix} \sqrt{\lambda_1} A_1 \\ \sqrt{\lambda_2} A_2 \\ \vdots \\ \sqrt{\lambda_k} A_k \end{bmatrix} x - \begin{bmatrix} \sqrt{\lambda_1} b_1 \\ \sqrt{\lambda_2} b_2 \\ \vdots \\ \sqrt{\lambda_k} b_k \end{bmatrix} \Big\|^2$$

Solution is unique if the *stacked matrix* has linearly independent columns

- \Box Each matrix A_i may have linearly dependent columns (or be a wide matrix)
- □ if the stacked matrix has linearly independent columns, the solution is

$$\hat{x} = \left(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k\right)^{-1} \left(\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k\right)$$

Lagrange multiplier

Example

$$f(x) = \min(x_1 x_2)$$
$$g(x) = 1 - x_1 - x_2$$
$$g(x) = 0$$

$$L(x,\lambda) = f(x) + \lambda g(x)$$
$$\nabla_x f(x) = 0$$

Constrained Least Square

Example

$$\Box \begin{cases} \min_{x} ||Ax - b||^{2} & A: m \times n \\ s.t. & Cx = d & C: p \times n \\ L(x, \lambda) = ||Ax - b||^{2} + \lambda^{T} (Cx - d) \end{cases}$$

$$\begin{cases} \nabla_x L = 2A^T A x - 2A^T b + C^T \lambda = 0\\ \nabla_\lambda L = C x - d = 0 \end{cases} \rightarrow \begin{bmatrix} 2A^T A & C^T\\ C & 0 \end{bmatrix} \begin{bmatrix} x^*\\ \lambda^* \end{bmatrix} = \begin{bmatrix} 2A^T b\\ d \end{bmatrix}$$

Note

 \square #equations: n + p #Unkowns: n + p

□ KKT equations

 \Box Least Square problem is a KKT problem with A = I, b = 0

Least Squares Regression

Note

Remember the regression model (affine function) :

$$\hat{f}(x) = x^T \beta + v$$

 \Box The prediction error for example *i* is:

$$r^{(i)} = y^{(i)} - \hat{f}(x^{(i)}) = y^{(i)} - (x^{(i)})^T \beta - v$$

The MSE is :

$$\frac{1}{N}\sum_{i=1}^{N} (r^{(i)})^2 = \frac{1}{N}\sum_{i=1}^{N} (y^{(i)} - (x^{(i)})^T \beta - v)^2$$

Least Squares Regression

choose the model parameters v, β that minimize the MSE

$$\frac{1}{N}\sum_{i=1}^{N} (y^{(i)} - (x^{(i)})^{T}\beta - v)^{2}$$

this is the least square problem: minimize $||A\theta - y^d||^2$ with

$$A = \begin{bmatrix} 1 & (x^{(1)})^{T} \\ 1 & (x^{(2)})^{T} \\ \vdots & \vdots \\ 1 & (x^{(N)})^{T} \end{bmatrix}, \qquad \theta = \begin{bmatrix} v \\ \beta \end{bmatrix}, \qquad y^{d} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

we write the solution as $\hat{\theta} = (\hat{v}, \hat{\beta})$

Least Squares Regression

Example

$$\hat{f}(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \dots + \theta_p x^{p-1}$$

- a linear-in-parameters model with basis functions......
- least squares model fitting in matrix notation?